Tokyo Probability Seminar
Seminar information archive ~10/06|Next seminar|Future seminars 10/07~
Date, time & place | Monday 16:00 - 17:30 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Makiko Sasada, Shuta Nakajima |
2024/10/10
10:00-11:30 Room #122 (Graduate School of Math. Sci. Bldg.)
The lecture is in the morning. The classroom is 122. This is a joint seminar with the Infinite Analysis Seminar Tokyo. No teatime today.
Chiara Franceschini (University of Modena and Reggio Emilia)
Harmonic models out of equilibrium: duality relations and invariant measure (英語)
The lecture is in the morning. The classroom is 122. This is a joint seminar with the Infinite Analysis Seminar Tokyo. No teatime today.
Chiara Franceschini (University of Modena and Reggio Emilia)
Harmonic models out of equilibrium: duality relations and invariant measure (英語)
[ Abstract ]
Zero-range interacting systems of Harmonic type have been recently introduced by Frassek, Giardinà and Kurchan [JSP 2020] from the integrable XXX Hamiltonian with non compact spins. In this talk I will introduce this one parameter family of models on a one dimensional lattice with open boundary whose dynamics describes redistribution of energy or jump of particles between nearest neighbor sites. These models belong to the same macroscopic class of the KMP model, introduced in 1982 by Kipnis Marchioro and Presutti. First, I will show their similar algebraic structure as well as their duality relations. Second, I will present how to explicitly characterize the invariant measure out of equilibrium, a task that is, in general, quite difficult in this context and it has been achieved in very few cases, e.g. the well known exclusion process. As an application, thanks to this characterization, it is possible to compute formulas predicted by macroscopic fluctuation theory. This is from joint works with: Gioia Carinci, Rouven Frassek, Davide Gabrielli, Cirstian Giarinà, Frank Redig and Dimitrios Tsagkarogiannis.
Zero-range interacting systems of Harmonic type have been recently introduced by Frassek, Giardinà and Kurchan [JSP 2020] from the integrable XXX Hamiltonian with non compact spins. In this talk I will introduce this one parameter family of models on a one dimensional lattice with open boundary whose dynamics describes redistribution of energy or jump of particles between nearest neighbor sites. These models belong to the same macroscopic class of the KMP model, introduced in 1982 by Kipnis Marchioro and Presutti. First, I will show their similar algebraic structure as well as their duality relations. Second, I will present how to explicitly characterize the invariant measure out of equilibrium, a task that is, in general, quite difficult in this context and it has been achieved in very few cases, e.g. the well known exclusion process. As an application, thanks to this characterization, it is possible to compute formulas predicted by macroscopic fluctuation theory. This is from joint works with: Gioia Carinci, Rouven Frassek, Davide Gabrielli, Cirstian Giarinà, Frank Redig and Dimitrios Tsagkarogiannis.