Algebraic Geometry Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2024/05/24
13:30-15:00 Room #ハイブリッド開催/056 (Graduate School of Math. Sci. Bldg.)
Kenta Sato (Kyusyu University)
Boundedness of weak Fano threefolds with fixed Gorenstein index in positive characteristic
Kenta Sato (Kyusyu University)
Boundedness of weak Fano threefolds with fixed Gorenstein index in positive characteristic
[ Abstract ]
In this talk, we give a partial affirmative answer to the BAB conjecture for 3-folds in characteristic p>5. Specifically, we prove that a set of weak Fano 3-folds over an uncountable algebraically closed field is bounded, if each element X satisfies certain conditions regarding the Gorenstein index, a complement and Kodaira type vanishing. In the course of the proof, we also study a uniform lower bound for Seshadri constants of nef and big invertible sheaves on projective 3-folds.
In this talk, we give a partial affirmative answer to the BAB conjecture for 3-folds in characteristic p>5. Specifically, we prove that a set of weak Fano 3-folds over an uncountable algebraically closed field is bounded, if each element X satisfies certain conditions regarding the Gorenstein index, a complement and Kodaira type vanishing. In the course of the proof, we also study a uniform lower bound for Seshadri constants of nef and big invertible sheaves on projective 3-folds.