Algebraic Geometry Seminar
Seminar information archive ~05/01|Next seminar|Future seminars 05/02~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2023/12/15
13:30-15:00 Room #118 (Graduate School of Math. Sci. Bldg.)
Shihoko Ishii (University of Tokyo)
On a pair of a smooth variety and a multi-ideal with a real exponent in positive characteristic (日本語)
Shihoko Ishii (University of Tokyo)
On a pair of a smooth variety and a multi-ideal with a real exponent in positive characteristic (日本語)
[ Abstract ]
In birational geometry, the behaviors of the invariants, mld (minimal log discrepancy) and lct (log canonical threshold), play important roles. These invariants are studied well in case the base field is characteristic zero, but not so in positive characteristic case. In this talk, I work on a pair consisting of smooth variety and a multi-ideal with a real exponent over an algebraically closed field of positive characteristic. We reduce some behaviors of the invariants for such pairs in positive characteristic case into characteristic zero.
In birational geometry, the behaviors of the invariants, mld (minimal log discrepancy) and lct (log canonical threshold), play important roles. These invariants are studied well in case the base field is characteristic zero, but not so in positive characteristic case. In this talk, I work on a pair consisting of smooth variety and a multi-ideal with a real exponent over an algebraically closed field of positive characteristic. We reduce some behaviors of the invariants for such pairs in positive characteristic case into characteristic zero.