Discrete mathematical modelling seminar

Seminar information archive ~09/10Next seminarFuture seminars 09/11~

Organizer(s) Tetsuji Tokihiro, Ralph Willox

2023/07/13

17:30-18:30   Online
This seminar will be held using Zoom. If you wish to participate, please contact R. Willox by email.
Galina Filipuk (University of Warsaw)
On the Painlevé XXV - Ermakov equation (English)
[ Abstract ]
We study a nonlinear second order ordinary differential equation which we call the Ermakov-Painlevé XXV equation since under certain restrictions on its coefficients it can be reduced to the Ermakov or the Painlevé XXV equation. The Ermakov-Painlevé XXV equation also arises from a generalized Riccati equation and the related third order linear differential equation via the Schwarzian derivative. Starting from the Riccati equation and the second-order element of the Riccati chain as the simplest examples of linearizable equations, by introducing a suitable change of variables, it is shown how the Schwarzian derivative represents a key tool in the construction of solutions. Two families of Bäcklund transformations, which link the linear and nonlinear equations under investigation, are obtained. Some analytical examples will be given and discussed.

The talk will be mainly based on the paper
S. Carillo, A. Chichurin, G. Filipuk, F. Zullo, Schwarzian derivative, Painleve XXV--Ermakov equation and Backlund transformations, accepted in Mathematische Nachrichten, https://doi.org/10.1002/mana.202200180, available at arXiv:2201.02267 [nlin.SI].