Seminar on Geometric Complex Analysis

Seminar information archive ~09/13Next seminarFuture seminars 09/14~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2023/05/22

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Masanari Adachi (Shizuoka Univeristy)
A residue formula for meromorphic connections and applications to stable sets of foliations
[ Abstract ]
We discuss a proof for Brunella’s conjecture: a codimension one holomorphic foliation on a compact complex manifold of dimension > 2 has no exceptional minimal set if its normal bundle is ample. The main idea is the localization of the first Chern class of the normal bundle of the foliation via a holomorphic connection. Although this localization was done via that of the first Atiyah class in our previous proof, we shall explain that this can be shown more directly by a residue formula. If time permits, we also discuss a nonexistence result of Levi flat hypersurfaces with transversely affine Levi foliation. This talk is based on joint works
with S. Biard and J. Brinkschulte.
[ Reference URL ]
https://u-tokyo-ac-jp.zoom.us/meeting/register/tZEqceqsrTIjEtRxenSMdPogvCxlWzAogj5A