Tuesday Seminar on Topology
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2023/04/25
17:00-18:00 Online
Pre-registration required. See our seminar webpage.
Hiraku Nozawa (Ritsumeikan University)
Harmonic measures and rigidity of surface group actions on the circle (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Hiraku Nozawa (Ritsumeikan University)
Harmonic measures and rigidity of surface group actions on the circle (JAPANESE)
[ Abstract ]
We study rigidity properties of surface group actions on the circle via harmonic measures on the suspension bundles, which are measures invariant under the heat diffusion along leaves. We will explain a curvature estimate and a Gauss-Bonnet formula for an S^1-connection obtained by taking the average of the flat connection on the suspension bundle with respect to a harmonic measure. As consequences, we give a precise description of the harmonic measure on suspension foliations with maximal Euler number and an alternative proof of semiconjugacy rigidity theorems of Matsumoto and Burger-Iozzi-Wienhard for actions with maximal Euler number. This is joint work with Masanori Adachi and Yoshifumi Matsuda.
[ Reference URL ]We study rigidity properties of surface group actions on the circle via harmonic measures on the suspension bundles, which are measures invariant under the heat diffusion along leaves. We will explain a curvature estimate and a Gauss-Bonnet formula for an S^1-connection obtained by taking the average of the flat connection on the suspension bundle with respect to a harmonic measure. As consequences, we give a precise description of the harmonic measure on suspension foliations with maximal Euler number and an alternative proof of semiconjugacy rigidity theorems of Matsumoto and Burger-Iozzi-Wienhard for actions with maximal Euler number. This is joint work with Masanori Adachi and Yoshifumi Matsuda.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html