Algebraic Geometry Seminar
Seminar information archive ~09/12|Next seminar|Future seminars 09/13~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2023/01/31
14:30-16:00 Room #ハイブリッド開催/002 (Graduate School of Math. Sci. Bldg.)
Shiji Lyu (Princeton University)
Some properties of splinters via ultrapower (English)
Shiji Lyu (Princeton University)
Some properties of splinters via ultrapower (English)
[ Abstract ]
A Noetherian (reduced) ring is called a splinter if it is a direct summand of every finite ring extension of it. This notion is related to various interesting notions of singularities, but far less properties are known about splinters.
In this talk, we will discuss the question of "regular ascent"; in the simplest (but already essential) form, we ask, for a Noetherian splinter R, is the polynomial ring R[X] always a splinter. We will see how ultrapower, a construction mainly belonging to model theory, is involved.
A Noetherian (reduced) ring is called a splinter if it is a direct summand of every finite ring extension of it. This notion is related to various interesting notions of singularities, but far less properties are known about splinters.
In this talk, we will discuss the question of "regular ascent"; in the simplest (but already essential) form, we ask, for a Noetherian splinter R, is the polynomial ring R[X] always a splinter. We will see how ultrapower, a construction mainly belonging to model theory, is involved.