Algebraic Geometry Seminar

Seminar information archive ~07/20Next seminarFuture seminars 07/21~

Date, time & place Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu

2022/11/01

10:30-12:00   Room #ハイブリッド開催/002 (Graduate School of Math. Sci. Bldg.)
Tatsuro Kawakami (Kyoto)
Extendability of differential forms via Cartier operators (Japanese)
[ Abstract ]
For a normal variety X, we say X satisfies the extension theorem if, for every proper birational morphism from Y, every differential form on the regular locus of X extends to Y. This is a basic property relating differential forms and singularities, and many results are known over the field of complex numbers.
In this talk, we discuss the extension theorem in positive characteristic. Existing studies depend on geometric tools such as log resolutions, (mixed) Hodge theory, the minimal model program, and vanishing theorems, which are not expected to be true or are not known for higher-dimensional varieties in positive characteristic.
For this reason, I introduce a new algebraic approach to the extension theorem using Cartier operators. I also talk about an application of the theory of quasi-F-splitting, which is studied in joint work with Takamatsu-Tanaka-Witaszek-Yobuko-Yoshikawa, to the extension problem.