Tuesday Seminar on Topology
Seminar information archive ~10/11|Next seminar|Future seminars 10/12~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2021/11/16
17:00-18:00 Online
Pre-registration required. See our seminar webpage.
Wataru Yuasa (RIMS, Kyoto University)
Skein and cluster algebras of marked surfaces without punctures for sl(3) (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Wataru Yuasa (RIMS, Kyoto University)
Skein and cluster algebras of marked surfaces without punctures for sl(3) (JAPANESE)
[ Abstract ]
We consider a skein algebra consisting of sl(3)-webs with the boundary skein relations for a marked surface without punctures. We construct a quantum cluster algebra coming from the moduli space of decorated SL(3)-local systems of the surface inside the skew-field of fractions of the skein algebra. In this talk, we introduce the sticking trick and the cutting trick for sl(3)-webs. The sticking trick expands the boundary-localized skein algebra into the cluster algebra. The cutting trick gives Laurent expressions of "elevation-preserving" webs with positive coefficients in certain clusters. We can also apply these tricks in the case of sp(4). This talk is based on joint works with Tsukasa Ishibashi.
[ Reference URL ]We consider a skein algebra consisting of sl(3)-webs with the boundary skein relations for a marked surface without punctures. We construct a quantum cluster algebra coming from the moduli space of decorated SL(3)-local systems of the surface inside the skew-field of fractions of the skein algebra. In this talk, we introduce the sticking trick and the cutting trick for sl(3)-webs. The sticking trick expands the boundary-localized skein algebra into the cluster algebra. The cutting trick gives Laurent expressions of "elevation-preserving" webs with positive coefficients in certain clusters. We can also apply these tricks in the case of sp(4). This talk is based on joint works with Tsukasa Ishibashi.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html