## Lie Groups and Representation Theory

Seminar information archive ～08/03｜Next seminar｜Future seminars 08/04～

Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|

### 2021/06/29

17:00-18:00 Room #Online (Graduate School of Math. Sci. Bldg.)

Polynomial conjectures for nilpotent Lie groups

(Japanese)

**Hidenori Fujiwara**(Kindai University)Polynomial conjectures for nilpotent Lie groups

(Japanese)

[ Abstract ]

Let G = exp g be a connected and simply connected nilpotent Lie group with Lie algebra g. Let H = exp h be an analytic subgroup of G with Lie algebra h and χ a unitary character of H. We consider the monomial representation τ = ind^G_H χ of G. It is well known that the multiplicities in the irreducible disintegration of τ are either uniformly bounded or uniformly equal to ∞. In the former case, we say that τ has finite multiplicities.

Now let D_τ (G/H) be the algebra of the G-invariant differential operators on the fiber bundle over G/H associated to the data (H,χ). This algebra is commutative if and only if τ has finite multiplicities. In

1992 Corwin-Greenleaf presented the following polynomial conjecture :

when τ has finite multiplicities, the algebra D_τ (G/H) is isomorphic to the algebra C[Γ_τ]^H of the H-invariant polynomial functions on the affine subspace Γ_τ = {l ∈ g^* ; l |_h = - √ -1 dχ} of g^* .

It is well known in the representation theory of groups that between the two operations of induction and restriction there is a kind of duality. So, we think about a polynomial conjecture for restrictions. Let G be as above a connected and simply connected nilpotent Lie group and π an irreducible unitary representation of G. Let K be an analytic subgroup of G, and we consider the restriction π|_K of π to K. This time also it is known that the multiplicities in the irreducible disintegration of π|_K are either uniformly bounded or uniformly equal to ∞. In the former case, we say that π|_K has finite multiplicities and we assume

this eventuality. Let U(g) be the enveloping algebra of g_C, and we consider the algebra (U(g)/kerπ)_K of invariant differential operators. This means the set of the K-invariant elements. This algebra is commutative if and only if π|_K has finite multiplicities. In this case, is the algebra (U(g)/kerπ)^K isomorphic to the algebra C[Ω(π)]^K of the K-invariant polynomial functions on Ω(π)? Here, Ω(π) denotes the coadjoint orbit of G corresponding to π.

We would like to prove these two polynomial conjectures.

Let G = exp g be a connected and simply connected nilpotent Lie group with Lie algebra g. Let H = exp h be an analytic subgroup of G with Lie algebra h and χ a unitary character of H. We consider the monomial representation τ = ind^G_H χ of G. It is well known that the multiplicities in the irreducible disintegration of τ are either uniformly bounded or uniformly equal to ∞. In the former case, we say that τ has finite multiplicities.

Now let D_τ (G/H) be the algebra of the G-invariant differential operators on the fiber bundle over G/H associated to the data (H,χ). This algebra is commutative if and only if τ has finite multiplicities. In

1992 Corwin-Greenleaf presented the following polynomial conjecture :

when τ has finite multiplicities, the algebra D_τ (G/H) is isomorphic to the algebra C[Γ_τ]^H of the H-invariant polynomial functions on the affine subspace Γ_τ = {l ∈ g^* ; l |_h = - √ -1 dχ} of g^* .

It is well known in the representation theory of groups that between the two operations of induction and restriction there is a kind of duality. So, we think about a polynomial conjecture for restrictions. Let G be as above a connected and simply connected nilpotent Lie group and π an irreducible unitary representation of G. Let K be an analytic subgroup of G, and we consider the restriction π|_K of π to K. This time also it is known that the multiplicities in the irreducible disintegration of π|_K are either uniformly bounded or uniformly equal to ∞. In the former case, we say that π|_K has finite multiplicities and we assume

this eventuality. Let U(g) be the enveloping algebra of g_C, and we consider the algebra (U(g)/kerπ)_K of invariant differential operators. This means the set of the K-invariant elements. This algebra is commutative if and only if π|_K has finite multiplicities. In this case, is the algebra (U(g)/kerπ)^K isomorphic to the algebra C[Ω(π)]^K of the K-invariant polynomial functions on Ω(π)? Here, Ω(π) denotes the coadjoint orbit of G corresponding to π.

We would like to prove these two polynomial conjectures.