## Algebraic Geometry Seminar

Seminar information archive ～10/15｜Next seminar｜Future seminars 10/16～

Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|

Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |

### 2021/05/13

9:00-10:00 Room #zoom (Graduate School of Math. Sci. Bldg.)

いつもと日時が異なります。京大と共催

Relative vanishing theorems for schemes of equal characteristic zero (Englishg)

いつもと日時が異なります。京大と共催

**Takumi Murayama**(Princeton)Relative vanishing theorems for schemes of equal characteristic zero (Englishg)

[ Abstract ]

In 1953, Kodaira proved the Kodaira vanishing theorem, which states that if L is an ample divisor on a complex projective manifold X, then H^i(X,-L) = 0 for all i < dim(X). Since then, Kodaira's theorem and its generalizations have become indispensable tools in algebraic geometry over fields of characteristic zero. Even in this context, however, it is often necessary to work with schemes of finite type over power series rings, and a fundamental problem has been the lack of vanishing theorems in this setting.

We prove the analogue of the Kawamata-Viehweg vanishing theorem for proper morphisms of schemes of equal characteristic zero, which implies Kodaira's vanishing theorem in this context. This result resolves conjectures of Boutot and Kawakita, and is an important ingredient toward establishing the minimal model program for excellent schemes of equal characteristic zero.

In 1953, Kodaira proved the Kodaira vanishing theorem, which states that if L is an ample divisor on a complex projective manifold X, then H^i(X,-L) = 0 for all i < dim(X). Since then, Kodaira's theorem and its generalizations have become indispensable tools in algebraic geometry over fields of characteristic zero. Even in this context, however, it is often necessary to work with schemes of finite type over power series rings, and a fundamental problem has been the lack of vanishing theorems in this setting.

We prove the analogue of the Kawamata-Viehweg vanishing theorem for proper morphisms of schemes of equal characteristic zero, which implies Kodaira's vanishing theorem in this context. This result resolves conjectures of Boutot and Kawakita, and is an important ingredient toward establishing the minimal model program for excellent schemes of equal characteristic zero.