Algebraic Geometry Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2021/04/21
15:00-16:00 Room #ZOOM (Graduate School of Math. Sci. Bldg.)
Masafumi Hattori (Kyoto)
A decomposition formula for J-stability and its applications (日本語)
Masafumi Hattori (Kyoto)
A decomposition formula for J-stability and its applications (日本語)
[ Abstract ]
J-stability is an analog of K-stability and plays an important role in K-stability for general polarized varieties (not only for Kahler-Einstein metrics). Strikingly, G.Chen proved uniform J-stability and slope uniform J-stability are equivalent, analogous to Ross-Thomas slope theory and Mumford-Takemoto slope theory for vector bundles, by differential geometric arguments recently. However, this fact has not been proved in algebro-geometric way before. In this talk, I would like to explain a decomposition formula of non-Archimedean J-functional, the (n+1)-dimensional intersection number into n-dimensional intersection numbers and its applications to prove the fact for surfaces and to construct a K-stable but not uniformly K-stable lc pair. Based on arXiv:2103.04603
J-stability is an analog of K-stability and plays an important role in K-stability for general polarized varieties (not only for Kahler-Einstein metrics). Strikingly, G.Chen proved uniform J-stability and slope uniform J-stability are equivalent, analogous to Ross-Thomas slope theory and Mumford-Takemoto slope theory for vector bundles, by differential geometric arguments recently. However, this fact has not been proved in algebro-geometric way before. In this talk, I would like to explain a decomposition formula of non-Archimedean J-functional, the (n+1)-dimensional intersection number into n-dimensional intersection numbers and its applications to prove the fact for surfaces and to construct a K-stable but not uniformly K-stable lc pair. Based on arXiv:2103.04603