Seminar on Geometric Complex Analysis
Seminar information archive ~09/13|Next seminar|Future seminars 09/14~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2021/01/25
10:30-12:00 Online
Young-Jun Choi (Pusan National University)
Existence of a complete holomorphic vector field via the Kähler-Einstein metric
https://zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB
Young-Jun Choi (Pusan National University)
Existence of a complete holomorphic vector field via the Kähler-Einstein metric
[ Abstract ]
A fundamental problem in Several Complex Variables is to classify bounded pseudoconvex domains in the complex Euclidean space with a noncompact automorphism group, especially with a compact quotient. In the results of Wong-Rosay and Frankel, they make use of the "Scaling method'' for obtaining an 1-parameter family of automorphisms, which generates a holomorphic vector field.
In this talk, we discuss the existence of a nowhere vanishing complete holomorphic vector filed on a strongly pseudoconvex manifold admtting a negatively curved Kähler-Einstein metric and discrete sequence of automorphisms by introducing the scaling method on potentials of the Kähler-Einstein metric.
[ Reference URL ]A fundamental problem in Several Complex Variables is to classify bounded pseudoconvex domains in the complex Euclidean space with a noncompact automorphism group, especially with a compact quotient. In the results of Wong-Rosay and Frankel, they make use of the "Scaling method'' for obtaining an 1-parameter family of automorphisms, which generates a holomorphic vector field.
In this talk, we discuss the existence of a nowhere vanishing complete holomorphic vector filed on a strongly pseudoconvex manifold admtting a negatively curved Kähler-Einstein metric and discrete sequence of automorphisms by introducing the scaling method on potentials of the Kähler-Einstein metric.
https://zoom.us/meeting/register/tJ0vcu2rrDIqG9Rv5AT0Mpi37urIkJ1IRldB