Tuesday Seminar on Topology
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2020/12/01
17:00-18:00 Online
Pre-registration required. See our seminar webpage.
Yuya Koda (Hiroshima University)
Goeritz groups of bridge decompositions (JAPANESE)
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html
Pre-registration required. See our seminar webpage.
Yuya Koda (Hiroshima University)
Goeritz groups of bridge decompositions (JAPANESE)
[ Abstract ]
For a bridge decomposition of a link in the 3-sphere, we define the Goeritz group to be the group of isotopy classes of orientation-preserving homeomorphisms of the 3-sphere that preserve each of the bridge sphere and link setwise. The Birman-Hilden theory tells us that this is a $\mathbb{Z} / 2 \mathbb{Z}$-quotient of a "hyperelliptic Goeritz group". In this talk, we discuss properties, mainly of dynamical nature, of this group using a measure of complexity called the distance of the decomposition. We then give an application to the asymptotic behavior of the minimal entropies for the original Goeritz groups of Heegaard splittings. This talk is based on a joint work with Susumu Hirose, Daiki Iguchi and Eiko Kin.
[ Reference URL ]For a bridge decomposition of a link in the 3-sphere, we define the Goeritz group to be the group of isotopy classes of orientation-preserving homeomorphisms of the 3-sphere that preserve each of the bridge sphere and link setwise. The Birman-Hilden theory tells us that this is a $\mathbb{Z} / 2 \mathbb{Z}$-quotient of a "hyperelliptic Goeritz group". In this talk, we discuss properties, mainly of dynamical nature, of this group using a measure of complexity called the distance of the decomposition. We then give an application to the asymptotic behavior of the minimal entropies for the original Goeritz groups of Heegaard splittings. This talk is based on a joint work with Susumu Hirose, Daiki Iguchi and Eiko Kin.
https://park.itc.u-tokyo.ac.jp/MSF/topology/TuesdaySeminar/index_e.html