Tuesday Seminar on Topology

Seminar information archive ~09/26Next seminarFuture seminars 09/27~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya


17:00-18:00   Online
Pre-registration required. See our seminar webpage.
Kohei Iwaki (The University of Tokyo)
Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds (JAPANESE)
[ Abstract ]
In 1998, Lawrence-Zagier introduced a certain q-series and proved that its limit value at root of unity q=exp(2π i / K) coincides with the SU(2) Witten-Reshetikhin-Turaev (WRT) invariant of the Poincare homology sphere Σ(2,3,5) at the level K. Employing the idea of Gukov-Marino-Putrov based on resurgent analysis, we generalize the result of Lawrence-Zagier for the Seifert loops (Seifert manifolds with a single loop inside). That is, for each Seifert loop, we introduce an explicit q-series (WRT function) and show that its limit value at the root of unity coincides with the WRT invariant of the Seifert loop. We will also discuss a q-difference equation satisfied by the WRT function. This talk is based on a joint work with H. Fuji, H. Murakami and Y. Terashima which is available on arXiv:2007.15872.
[ Reference URL ]