Tuesday Seminar on Topology
Seminar information archive ~09/18|Next seminar|Future seminars 09/19~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2020/01/28
17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Nozomu Sekino (The University of Tokyo)
Existence problems for fibered links (JAPANESE)
Nozomu Sekino (The University of Tokyo)
Existence problems for fibered links (JAPANESE)
[ Abstract ]
It is known that every connected orientable closed 3-manifold has a fibered knot. However, finding (and classifying) fibered links whose fiber surfaces are fixed homeomorphism type in a given 3-manifold is difficult in general. We give a criterion of a simple closed curve on a genus 2g Heegaard surface being a genus g fibered knot in terms of its Heegaard diagram. As an application, we can prove the non-existence of genus one fibered knots in some Seifert manifolds.
There is one generalization of fibered links, homologically fibered links. This requests that the complement of the "fiber surface" is a homologically product of a surface and an interval. We give a necessary and sufficient condition for a connected sums of lens spaces of having a homologically fibered link whose fiber surfaces are some fixed types as some algebraic equations.
It is known that every connected orientable closed 3-manifold has a fibered knot. However, finding (and classifying) fibered links whose fiber surfaces are fixed homeomorphism type in a given 3-manifold is difficult in general. We give a criterion of a simple closed curve on a genus 2g Heegaard surface being a genus g fibered knot in terms of its Heegaard diagram. As an application, we can prove the non-existence of genus one fibered knots in some Seifert manifolds.
There is one generalization of fibered links, homologically fibered links. This requests that the complement of the "fiber surface" is a homologically product of a surface and an interval. We give a necessary and sufficient condition for a connected sums of lens spaces of having a homologically fibered link whose fiber surfaces are some fixed types as some algebraic equations.