Tuesday Seminar on Topology
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2020/01/14
17:00-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Ryohei Chihara (The University of Tokyo)
SO(3)-invariant G2-geometry (JAPANESE)
Ryohei Chihara (The University of Tokyo)
SO(3)-invariant G2-geometry (JAPANESE)
[ Abstract ]
Berger's classification of holonomy groups of Riemannian manifolds includes exceptional cases of the Lie groups G2 and Spin(7). Many authors have studied G2- and Spin(7)-manifolds with torus symmetry. In this talk, we generalize the celebrated examples due to Bryant and Salamon and study G2-manifolds with SO(3)-symmetry. Such torsion-free G2-structures are described as a dynamical system of SU(3)-structures on an SO(3)-fibration over a 3-manifold. As a main result, we reduce this system into a constrained Hamiltonian dynamical system on the cotangent bundle over the space of all Riemannian metrics on the 3-manifold. The Hamiltonian function is very similar to that of the Hamiltonian formulation of general relativity.
Berger's classification of holonomy groups of Riemannian manifolds includes exceptional cases of the Lie groups G2 and Spin(7). Many authors have studied G2- and Spin(7)-manifolds with torus symmetry. In this talk, we generalize the celebrated examples due to Bryant and Salamon and study G2-manifolds with SO(3)-symmetry. Such torsion-free G2-structures are described as a dynamical system of SU(3)-structures on an SO(3)-fibration over a 3-manifold. As a main result, we reduce this system into a constrained Hamiltonian dynamical system on the cotangent bundle over the space of all Riemannian metrics on the 3-manifold. The Hamiltonian function is very similar to that of the Hamiltonian formulation of general relativity.