Seminar on Geometric Complex Analysis
Seminar information archive ~09/19|Next seminar|Future seminars 09/20~
Date, time & place | Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Kengo Hirachi, Shigeharu Takayama |
2020/02/17
10:30-12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Toshiki Mabuchi (Osaka Univ.)
Precompactness of the moduli space of pseudo-normed graded algebras
Toshiki Mabuchi (Osaka Univ.)
Precompactness of the moduli space of pseudo-normed graded algebras
[ Abstract ]
Graded algebras (such as canonical rings) coming from the spaces of sections of polarized algebraic varieties are studied by many mathematicians. On the other hand, the pseudo-norm project proposed by S.-T. Yau and C.-Y. Chi gives us a new differential geometric aspect of the Torelli type theorem.
In this talk, we give the details of how the geometry of pseudo-normed graded algebras allows us to obtain a natural compactification of the moduli space of pseudo-normed graded algebras.
(1) For a sequence of pseudo-normed graded algebras (of the same type), the above precompactness gives us some limit different from the Gromov-Hausdorff limit in Riemannian geometry.
(2) As an example of our construction, we have the Deligne-Mumford compactification, in which the notion of the orthogonal direct sum of pseudo-normed spaces comes up naturally. We also have a higher dimensional analogue by using weight filtration.
Graded algebras (such as canonical rings) coming from the spaces of sections of polarized algebraic varieties are studied by many mathematicians. On the other hand, the pseudo-norm project proposed by S.-T. Yau and C.-Y. Chi gives us a new differential geometric aspect of the Torelli type theorem.
In this talk, we give the details of how the geometry of pseudo-normed graded algebras allows us to obtain a natural compactification of the moduli space of pseudo-normed graded algebras.
(1) For a sequence of pseudo-normed graded algebras (of the same type), the above precompactness gives us some limit different from the Gromov-Hausdorff limit in Riemannian geometry.
(2) As an example of our construction, we have the Deligne-Mumford compactification, in which the notion of the orthogonal direct sum of pseudo-normed spaces comes up naturally. We also have a higher dimensional analogue by using weight filtration.