Seminar on Geometric Complex Analysis

Seminar information archive ~09/19Next seminarFuture seminars 09/20~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2020/02/17

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Toshiki Mabuchi (Osaka Univ.)
Precompactness of the moduli space of pseudo-normed graded algebras
[ Abstract ]
Graded algebras (such as canonical rings) coming from the spaces of sections of polarized algebraic varieties are studied by many mathematicians. On the other hand, the pseudo-norm project proposed by S.-T. Yau and C.-Y. Chi gives us a new differential geometric aspect of the Torelli type theorem.
In this talk, we give the details of how the geometry of pseudo-normed graded algebras allows us to obtain a natural compactification of the moduli space of pseudo-normed graded algebras.
(1) For a sequence of pseudo-normed graded algebras (of the same type), the above precompactness gives us some limit different from the Gromov-Hausdorff limit in Riemannian geometry.
(2) As an example of our construction, we have the Deligne-Mumford compactification, in which the notion of the orthogonal direct sum of pseudo-normed spaces comes up naturally. We also have a higher dimensional analogue by using weight filtration.