Algebraic Geometry Seminar
Seminar information archive ~01/15|Next seminar|Future seminars 01/16~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2019/07/09
13:00-14:30 Room #122 (Graduate School of Math. Sci. Bldg.)
Taro Sano (Kobe university)
Construction of non-Kähler Calabi-Yau 3-folds by smoothing normal crossing varieties (TBA)
Taro Sano (Kobe university)
Construction of non-Kähler Calabi-Yau 3-folds by smoothing normal crossing varieties (TBA)
[ Abstract ]
It is an open problem whether there are only finitely many diffeomorphism types of projective Calabi-Yau 3-folds. Kawamata--Namikawa developed log deformation theory of normal crossing Calabi-Yau varieties. As an application of their result, one can construct examples of Calabi-Yau manifolds by smoothing SNC varieties. In this talk, I will explain how to construct examples of non-Kähler Calabi-Yau 3-folds with arbitrarily large 2nd Betti numbers. If time permits, I will also explain an example of involutions on a family of K3 surfaces which do not lift biregularly to the total space. This is based on joint work with Kenji Hashimoto.
It is an open problem whether there are only finitely many diffeomorphism types of projective Calabi-Yau 3-folds. Kawamata--Namikawa developed log deformation theory of normal crossing Calabi-Yau varieties. As an application of their result, one can construct examples of Calabi-Yau manifolds by smoothing SNC varieties. In this talk, I will explain how to construct examples of non-Kähler Calabi-Yau 3-folds with arbitrarily large 2nd Betti numbers. If time permits, I will also explain an example of involutions on a family of K3 surfaces which do not lift biregularly to the total space. This is based on joint work with Kenji Hashimoto.