Applied Analysis
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.) |
---|
2019/10/31
16:00-17:30 Room #128 (TBD) (Graduate School of Math. Sci. Bldg.)
Marius Ghergu (University College Dublin)
Behaviour around the isolated singularity for solutions of some nonlinear elliptic inequalities and systems (English)
Marius Ghergu (University College Dublin)
Behaviour around the isolated singularity for solutions of some nonlinear elliptic inequalities and systems (English)
[ Abstract ]
We present some results on the behaviour around the isolated singularity for solutions of nonlinear elliptic inequalities driven by the Laplace operator. We derive optimal conditions that imply either a blow-up or the existence of pointwise bounds for solutions. We obtain that whenever a pointwise bound exists, then an optimal bound is given by the fundamental solution of the Laplace operator. This situation changes in case of systems of inequalities where other types of optimal bounds may occur. The approach relies on integral representation of solutions combined with various nonlinear potential estimates. Further extensions to the parabolic case will be presented. This talk is based on joint works with S. Taliaferro (Texas A&M University) and I. Verbitsky (Missouri University).
We present some results on the behaviour around the isolated singularity for solutions of nonlinear elliptic inequalities driven by the Laplace operator. We derive optimal conditions that imply either a blow-up or the existence of pointwise bounds for solutions. We obtain that whenever a pointwise bound exists, then an optimal bound is given by the fundamental solution of the Laplace operator. This situation changes in case of systems of inequalities where other types of optimal bounds may occur. The approach relies on integral representation of solutions combined with various nonlinear potential estimates. Further extensions to the parabolic case will be presented. This talk is based on joint works with S. Taliaferro (Texas A&M University) and I. Verbitsky (Missouri University).