Tuesday Seminar on Topology

Seminar information archive ~04/16Next seminarFuture seminars 04/17~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya


17:00-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Maria de los Angeles Guevara (Osaka City University)
On the dealternating number and the alternation number (ENGLISH)
[ Abstract ]
Links can be divided into alternating and non-alternating depending on if they possess an alternating diagram or not. After the proof of the Tait flype conjecture on alternating links, it became an important question to ask how a non-alternating link is “close to” alternating links. The dealternating and alternation numbers, which are invariants introduced by C. Adams et al. and A. Kawauchi, respectively, can deal with this question. By definitions, for any link, its alternation number is less than or equal to its dealternating number. It is known that in general the equality does not hold. However, in general, it is not easy to show a gap between these invariants. In this seminar, we will show some results regarding these invariants. In particular, for each pair of positive integers, we will construct infinitely many knots, which have dealternating and alternation numbers determined for these integers. Therefore, an arbitrary gap between the values of these invariants will be obtained.