Algebraic Geometry Seminar

Seminar information archive ~04/15Next seminarFuture seminars 04/16~

Date, time & place Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu

2019/05/29

15:30-17:00   Room #118 (Graduate School of Math. Sci. Bldg.)
Chen Jiang (Fudan/MSRI)
Minimal log discrepancies of 3-dimensional non-canonical singularities (English)
[ Abstract ]
Canonical and terminal singularities, introduced by Reid, appear naturally in minimal model program and play important roles in the birational classification of higher dimensional algebraic varieties. Such singularities are well-understood in dimension 3, while the property of non-canonical singularities is still mysterious. We investigate the difference between canonical and non-canonical singularities via minimal log discrepancies (MLD). We show that there is a gap between MLD of 3-dimensional non-canonical singularities and that of 3-dimensional canonical singularities, which is predicted by a conjecture of Shokurov.
This result on local singularities has applications to global geometry of Calabi–Yau 3-folds. We show that the set of all non-canonical klt Calabi–Yau 3-folds are bounded modulo flops, and the global indices of all klt Calabi–Yau 3-folds are bounded from above.