Seminar on Geometric Complex Analysis

Seminar information archive ~03/03Next seminarFuture seminars 03/04~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama


10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Takayuki Koike (Osaka City Univ.)
Gluing construction of K3 surfaces (Japanese)
[ Abstract ]
Arnol'd showed the uniqueness of the complex analytic structure of a small neighborhood of an elliptic curve embedded in a surface whose normal bundle satisfies "Diophantine condition" in the Picard variety. By applying this theorem, we construct a K3 surface by holomorphically patching two open complex surfaces obtained as the complements of tubular neighborhoods of anti-canonical curves of blow-ups of the projective planes at general nine points. Our construction has 19 complex dimensional degrees of freedom. For general parameters, the resulting K3 surface is neither Kummer nor projective. By the argument based on the concrete computation of the period map, we also investigate which points in the period domain correspond to K3 surfaces obtained by such construction. (Based on joint work with Takato Uehara)