Tuesday Seminar on Topology

Seminar information archive ~07/13Next seminarFuture seminars 07/14~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2018/12/20

13:00-14:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Anderson Vera (Université de Strasbourg)
Johnson-type homomorphisms and the LMO functor (ENGLISH)
[ Abstract ]
One of the main objects associated to a surface S is the mapping class group MCG(S). This group plays an important role in the study of 3-manifolds. Reciprocally, the topological invariants of 3-manifolds can be used to obtain interesting representations of MCG(S).

One possible approach to the study of MCG(S) is to consider its action on the fundamental group P of the surface or on some subgroups of P. This way, we can obtain some kind of filtrations of MCG(S) and homomorphisms, called Johnson type homomorphisms, which take values in certain spaces of diagrams. These spaces of diagrams are quotients of the target space of the LMO functor. Hence it is natural to ask what is the relation between the Johnson type homomorphisms and the LMO functor. The answer is well known in the case of the Torelli group and the usual Johnson homomorphisms. In this talk we consider two other different filtrations of MCG(S) introduced by Levine and Habiro-Massuyeau. We show that the respective Johnson homomorphisms can also be deduced from the LMO functor.