Tuesday Seminar on Topology

Seminar information archive ~05/21Next seminarFuture seminars 05/22~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2018/12/11

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Masashi Ishida (Osaka University)
On non-singular solutions to the normalized Ricci flow on four-manifolds (JAPANESE)
[ Abstract ]
A solution to the normalized Ricci flow is called non-singular if the solution exists for all time and the Riemannian curvature tensor is uniformly bounded. In 1999, Richard Hamilton introduced it as an important special class of solutions and proved that the underlying 3-manifold is geometrizable in the sense of Thurston. In this talk, we will discuss properties of 4-dimensional non-singular solutions from a gauge theoretical point of view. In particular, we would like to explain gauge theoretical invariants give rise to obstructions to the existence of 4-dimensional non-singular solutions.