Seminar on Geometric Complex Analysis

Seminar information archive ~10/03Next seminarFuture seminars 10/04~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2018/12/17

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Joe Kamimoto (Kyushu University)
Newton polyhedra and order of contact on real hypersurfaces (JAPANESE)
[ Abstract ]
This talk will concern some issues on order of contact on real hypersurfaces, which was introduced by D'Angelo. To be more precise, a sufficient condition for the equality of regular type and singular type is given. This condition is written by using the Newton polyhedron of a defining function. Our result includes earlier known results concerning convex domains, pseudoconvex Reinhardt domains and pseudoconvex domains whose regular types are 4. Furthermore, under the above condition, the values of the types can be directly seen in a simple geometrical information from the Newton polyhedron.

The technique of using Newton polyhedra has many significant applications in singularity theory. In particular, this technique has been great success in the study of the Lojasiewicz exponent. Our study about the types is analogous to some works on the Lojasiewicz exponent.