Applied Analysis
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.) |
---|
2018/11/15
16:00-17:30 Room #118 (Graduate School of Math. Sci. Bldg.)
Nakao Hayashi (Osaka University)
Inhomogeneous Dirichlet-boundary value problem for one dimensional nonlinear Schr\"{o}dinger equations (Japanese)
Nakao Hayashi (Osaka University)
Inhomogeneous Dirichlet-boundary value problem for one dimensional nonlinear Schr\"{o}dinger equations (Japanese)
[ Abstract ]
We consider the inhomogeneous Dirichlet-boundary value problem for the cubic nonlinear Schr\"{o}dinger equations on the half line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to equations by using the classical energy method and factorization techniques.
We consider the inhomogeneous Dirichlet-boundary value problem for the cubic nonlinear Schr\"{o}dinger equations on the half line. We present sufficient conditions of initial and boundary data which ensure asymptotic behavior of small solutions to equations by using the classical energy method and factorization techniques.