Discrete mathematical modelling seminar

Seminar information archive ~06/12Next seminarFuture seminars 06/13~

Organizer(s) Tetsuji Tokihiro, Ralph Willox

2018/06/25

17:30-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Anton Dzhamay (University of Northern Colorado)
Gap Probabilities and discrete Painlevé equations
[ Abstract ]
It is well-known that important statistical quantities, such as gap probabilities, in various discrete probabilistic models of random matrix type satisfy the so-called discrete Painlevé equations, which provides an effective way to computing them. In this talk we discuss this correspondence for a particular class of models, known as boxed plane partitions (equivalently, lozenge tilings of a hexagon). For uniform probability distribution, this is one of the most studied models of random surfaces. Borodin, Gorin, and Rains showed that it is possible to assign a very general elliptic weight to the distribution, with various degenerations of this weight corresponding to the degeneration cascade of discrete polynomial ensembles, such as Racah and Hahn ensembles and their q-analogues. This also correspond to the degeneration scheme of discrete Painlevé equations, due to Sakai. In this talk we consider the q-Hahn and q-Racah ensembles and corresponding discrete Painlevé equations of types q-P(A_{2}^{(1)}) and q-P(A_{1}^{(1)}).
This is joint work with Alisa Knizel (Columbia University)