Applied Analysis
Seminar information archive ~10/30|Next seminar|Future seminars 10/31~
| Date, time & place | Thursday 16:00 - 17:30 Room # (Graduate School of Math. Sci. Bldg.) | 
|---|---|
| Organizer(s) | ISHIGE Kazuhiro, MIYAMOTO Yasuhito, MITAKE Hiroyoshi, TAKADA Ryo | 
2018/05/24
16:00-17:30   Room #128   (Graduate School of Math. Sci. Bldg.)
Eiji Yanagida (Tokyo Institute of Technology)
Sign-changing solutions for a one-dimensional semilinear parabolic problem (Japanese)
					Eiji Yanagida (Tokyo Institute of Technology)
Sign-changing solutions for a one-dimensional semilinear parabolic problem (Japanese)
[ Abstract ]
This talk is concerned with a nonlinear parabolic equation on a bounded interval with the homogeneous Dirichlet or Neumann boundary condition. Under rather general conditions on the nonlinearity, we consider the blow-up and global existence of sign-changing solutions. It is shown that there exists a nonnegative integer $k$ such that the solution blows up in finite time if the initial value changes its sign at most $k$ times, whereas there exists a stationary solution with more than $k$ zeros. The proof is based on an intersection number argument combined with a topological method.
This talk is concerned with a nonlinear parabolic equation on a bounded interval with the homogeneous Dirichlet or Neumann boundary condition. Under rather general conditions on the nonlinearity, we consider the blow-up and global existence of sign-changing solutions. It is shown that there exists a nonnegative integer $k$ such that the solution blows up in finite time if the initial value changes its sign at most $k$ times, whereas there exists a stationary solution with more than $k$ zeros. The proof is based on an intersection number argument combined with a topological method.


 Text only print
Text only print Full screen print
Full screen print


