Tuesday Seminar on Topology

Seminar information archive ~06/14Next seminarFuture seminars 06/15~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2018/04/17

17:00-18:30   Room #056 (Graduate School of Math. Sci. Bldg.)
Tamás Kálmán (Tokyo Institute of Technology)
Tight contact structures on Seifert surface complements and knot invariants (ENGLISH)
[ Abstract ]
In joint work with Daniel Mathews, we examined complements of standard Seifert surfaces of special alternating links and used Honda's method to enumerate those tight contact structures on them whose dividing sets are isotopic to the link. The number turns out to be the leading coefficient of the Alexander polynomial. The proof is rather combinatorial in nature; for example, the Euler classes of the contact structures are identified with `hypertrees' in a certain hypergraph. Using earlier results with Hitoshi Murakami and Alexander Postnikov, this yields a connection between contact topology and the Homfly polynomial. We also found that the contact invariants of our structures form a basis for the sutured Floer homology of the manifold.