Tuesday Seminar on Topology

Seminar information archive ~10/11Next seminarFuture seminars 10/12~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2018/02/21

17:00-18:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Gwénaël Massuyeau (Université de Bourgogne)
The category of bottom tangles in handlebodies, and the Kontsevich integral (ENGLISH)
[ Abstract ]
Habiro introduced the category B of « bottom tangles in handlebodies », which encapsulates the set of knots in the 3-sphere as well as the mapping class groups of 3-dimensional handlebodies. There is a natural filtration on the category B defined using an appropriate generalization of Vassiliev invariants. In this talk, we will show that the completion of B with respect to the Vassiliev filtration is isomorphic to a certain category A which can be defined either in a combinatorial way using « Jacobi diagrams », or by a universal property via the notion of « Casimir Hopf algebra ». Such an isomorphism will be obtained by extending the Kontsevich integral (originally defined as a knot invariant) to a functor Z from B to A. This functor Z can be regarded as a refinement of the TQFT-like functor derived from the LMO invariant and, if time allows, we will evoke the topological interpretation of the « tree-level » of Z. (This is based on joint works with Kazuo Habiro.)