Algebraic Geometry Seminar

Seminar information archive ~03/03Next seminarFuture seminars 03/04~

Date, time & place Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu


15:30-17:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Masaru Nagaoka (The University of Tokyo)
Contractible affine threefolds in smooth Fano threefolds (English or Japanese)
[ Abstract ]
By the contribution of M. Furushima, N. Nakayama, Th. Peternell and M.
Schneider, it is completed to classify all projective compactifications
of the affine $3$-space $\mathbb{A}^3$ with Picard number one.
As a similar question, T. Kishimoto raised the problem to classify all
triplets $(V, U, D_1 \cup D_2)$ which consist of smooth Fano threefolds
$V$ of Picard number two, contractible affine threefolds $U$ as open
subsets of $V$, and the complements $D_1 \cup D_2 =V \setminus U$.
He also solved this problem when the log canonical divisors $K_V+D_1+D_2
$ are not nef.
In this talk, I will discuss the triplets $(V, U, D_1 \cup D_2)$ whose
log canonical divisors are linearly equivalent to zero.
I will also explain how to determine all Fano threefolds $V$ which
appear in such triplets.