Seminar on Geometric Complex Analysis

Seminar information archive ~02/25Next seminarFuture seminars 02/26~

Date, time & place Monday 10:30 - 12:00 Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama

2016/10/24

10:30-12:00   Room #128 (Graduate School of Math. Sci. Bldg.)
Satoru Shimizu (Tohoku University)
Structure and equivalence of a class of tube domains with solvable groups of automorphisms (JAPANESE)
[ Abstract ]
In the study of the holomorphic equivalence problem for tube domains, it is fundamental to investigate tube domains with polynomial infinitesimal automorphisms. To apply Lie group theory to the holomorphic equivalence problem for such tube domains $T_\Omega$, investigating certain solvable subalgebras of $\frak g(T_{\Omega})$ plays an important role, where $\frak g(T_{\Omega})$ is the Lie algebra of all complete polynomial vector fields on $T_\Omega$. Related to this theme, we discuss the structure and equivalence of a class of tube domains with solvable groups of automorphisms. Besides, we give a concrete example of a tube domain whose automorphism group is solvable and contains nonaffine automorphisms.