PDE Real Analysis Seminar
Seminar information archive ~10/11|Next seminar|Future seminars 10/12~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|
2016/03/16
16:00-17:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Boris Khesin (University of Toronto)
Fluids, vortex membranes, and skew-mean-curvature flows (English)
Boris Khesin (University of Toronto)
Fluids, vortex membranes, and skew-mean-curvature flows (English)
[ Abstract ]
We show that an approximation of the hydrodynamical Euler equation describes the skew-mean-curvature flow on vortex membranes in any dimension. This generalizes the classical binormal, or vortex filament, equation in 3D. We present a Hamiltonian framework for dynamics of higher-dimensional vortex filaments and vortex sheets as singular 2-forms (Green currents) with support of codimensions 2 and 1, respectively.
We show that an approximation of the hydrodynamical Euler equation describes the skew-mean-curvature flow on vortex membranes in any dimension. This generalizes the classical binormal, or vortex filament, equation in 3D. We present a Hamiltonian framework for dynamics of higher-dimensional vortex filaments and vortex sheets as singular 2-forms (Green currents) with support of codimensions 2 and 1, respectively.