Tuesday Seminar on Topology
Seminar information archive ~09/10|Next seminar|Future seminars 09/11~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2016/01/19
15:00-16:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Hikaru Yamamoto (The University of Tokyo)
Ricci-mean curvature flows in gradient shrinking Ricci solitons (JAPANESE)
Hikaru Yamamoto (The University of Tokyo)
Ricci-mean curvature flows in gradient shrinking Ricci solitons (JAPANESE)
[ Abstract ]
A Ricci-mean curvature flow is a coupled parabolic PDE system of a mean
curvature flow and a Ricci flow.
In this talk, we consider a Ricci-mean curvature flow in a gradient
shrinking Ricci soliton, and give a generalization of a well-known result
of Huisken which states that if a mean curvature flow in a Euclidean space
develops a singularity of type I, then its parabolic rescaling near the singular
point converges to a self-shrinker.
A Ricci-mean curvature flow is a coupled parabolic PDE system of a mean
curvature flow and a Ricci flow.
In this talk, we consider a Ricci-mean curvature flow in a gradient
shrinking Ricci soliton, and give a generalization of a well-known result
of Huisken which states that if a mean curvature flow in a Euclidean space
develops a singularity of type I, then its parabolic rescaling near the singular
point converges to a self-shrinker.