Tuesday Seminar on Topology
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | HABIRO Kazuo, KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2015/12/01
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Takayuki Okuda (The University of Tokyo)
Monodromies of splitting families for singular fibers (JAPANESE)
Takayuki Okuda (The University of Tokyo)
Monodromies of splitting families for singular fibers (JAPANESE)
[ Abstract ]
A degeneration of Riemann surfaces is a family of complex curves
over a disk allowed to have a singular fiber.
A singular fiber may split into several simpler singular fibers
under a deformation family of such families,
which is called a splitting family for the singular fiber.
We are interested in the topology of splitting families.
For the topological types of degenerations of Riemann surfaces,
it is known that there is a good relationship with
the surface mapping classes, via topological monodromy.
In this talk,
we introduce the "topological monodromies of splitting families",
and give a description of those of certain splitting families.
A degeneration of Riemann surfaces is a family of complex curves
over a disk allowed to have a singular fiber.
A singular fiber may split into several simpler singular fibers
under a deformation family of such families,
which is called a splitting family for the singular fiber.
We are interested in the topology of splitting families.
For the topological types of degenerations of Riemann surfaces,
it is known that there is a good relationship with
the surface mapping classes, via topological monodromy.
In this talk,
we introduce the "topological monodromies of splitting families",
and give a description of those of certain splitting families.