Tuesday Seminar on Topology
Seminar information archive ~10/09|Next seminar|Future seminars 10/10~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2015/10/27
17:00-18:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Yuanyuan Bao (The University of Tokyo)
Heegaard Floer homology for graphs (JAPANESE)
Yuanyuan Bao (The University of Tokyo)
Heegaard Floer homology for graphs (JAPANESE)
[ Abstract ]
Ozsváth and Szabó defined the Heegaard Floer homology (HF) for a closed oriented 3-manifold. The definition was then generalized to links embedded in a 3-manifold and the manifolds with boundary (sutured and bordered manifolds). In the case of links, there is a beautiful combinatorial way to rewrite the original definition of HF, which was defined on a Heegaard diagram of the given link, by using grid diagram. For a balanced bipartite graph, we defined its Heegaard diagram and the HF for it. Around the same time, Harvey and O’Donnol defined the combinatorial HF for transverse graphs (see the definition in [arXiv:1506.04785v1]). In this talk, we compare these two methods.
Ozsváth and Szabó defined the Heegaard Floer homology (HF) for a closed oriented 3-manifold. The definition was then generalized to links embedded in a 3-manifold and the manifolds with boundary (sutured and bordered manifolds). In the case of links, there is a beautiful combinatorial way to rewrite the original definition of HF, which was defined on a Heegaard diagram of the given link, by using grid diagram. For a balanced bipartite graph, we defined its Heegaard diagram and the HF for it. Around the same time, Harvey and O’Donnol defined the combinatorial HF for transverse graphs (see the definition in [arXiv:1506.04785v1]). In this talk, we compare these two methods.