Algebraic Geometry Seminar
Seminar information archive ~04/30|Next seminar|Future seminars 05/01~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2015/10/05
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Evangelos Routis (IPMU)
Weighted Compactifications of Configuration Spaces (English)
Evangelos Routis (IPMU)
Weighted Compactifications of Configuration Spaces (English)
[ Abstract ]
In the early 90's, Fulton and MacPherson provided a natural and beautiful way of compactifying the configuration space F(X,n) of n distinct labeled points on an arbitrary nonsingular variety. In this talk, I will present an alternate compactification of F(X,n), which generalizes the work of Fulton and MacPherson and is parallel to Hassett's weighted generalization of the moduli space of n-pointed stable curves. After discussing its main properties, I will give a presentation of its intersection ring and as an application, I will describe the intersection ring of Hassett's spaces in genus 0. Finally, as time permits, I will discuss some additional moduli problems associated with weighted compactifications.
In the early 90's, Fulton and MacPherson provided a natural and beautiful way of compactifying the configuration space F(X,n) of n distinct labeled points on an arbitrary nonsingular variety. In this talk, I will present an alternate compactification of F(X,n), which generalizes the work of Fulton and MacPherson and is parallel to Hassett's weighted generalization of the moduli space of n-pointed stable curves. After discussing its main properties, I will give a presentation of its intersection ring and as an application, I will describe the intersection ring of Hassett's spaces in genus 0. Finally, as time permits, I will discuss some additional moduli problems associated with weighted compactifications.