PDE Real Analysis Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Yoshikazu Giga, Kazuhiro Ishige, Hiroyoshi Mitake, Tsuyoshi Yoneda |
URL | https://www.math.sci.hokudai.ac.jp/coe/sympo/pde_ra/index_en.html |
2015/01/06
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Elio Eduardo Espejo (National University of Colombia / Osaka University)
Global existence and asymptotic behavior for some Keller-Segel systems coupled with Navier-Stokes equations (英語)
Elio Eduardo Espejo (National University of Colombia / Osaka University)
Global existence and asymptotic behavior for some Keller-Segel systems coupled with Navier-Stokes equations (英語)
[ Abstract ]
There are plenty of examples in nature, where cells move in response to some chemical signal in the environment. Biologists call this phenomenon chemotaxis. In my talk I will approach the problem of describing mathematically the phenomenon of chemotaxis when it happens surrounded by a fluid. This is a new research topic bringing the attention of many scientists because it has given rise to many interesting questions having relevance in both biology and mathematics. In particular, I will present some new mathematical models arising from my current research that have given rise to Keller-Segel type systems coupled with Navier-Stokes systems. I will present some results of global existence and asymptotic behavior. Finally I will discuss some open problems.
There are plenty of examples in nature, where cells move in response to some chemical signal in the environment. Biologists call this phenomenon chemotaxis. In my talk I will approach the problem of describing mathematically the phenomenon of chemotaxis when it happens surrounded by a fluid. This is a new research topic bringing the attention of many scientists because it has given rise to many interesting questions having relevance in both biology and mathematics. In particular, I will present some new mathematical models arising from my current research that have given rise to Keller-Segel type systems coupled with Navier-Stokes systems. I will present some results of global existence and asymptotic behavior. Finally I will discuss some open problems.