PDE Real Analysis Seminar
Seminar information archive ~10/15|Next seminar|Future seminars 10/16~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|
2014/12/02
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Tsubasa Itoh (Tokyo Institute of Technology)
Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner (JAPANESE)
Tsubasa Itoh (Tokyo Institute of Technology)
Remark on single exponential bound of the vorticity gradient for the two-dimensional Euler flow around a corner (JAPANESE)
[ Abstract ]
In this talk, the two dimensional Euler flow under a simple symmetry condition with hyperbolic structure in a unit square $D=\{(x_{1}, x_{2}): 0 < x_{1} + x_{2} < \sqrt{2},\ 0<-x_{1} + x_{2} < \sqrt{2}\}$ is considered.
It is shown that the Lipschitz estimate of the vorticity on the boundary is at most single exponential growth near the stagnation point.
(Joint work with Tsuyoshi Yoneda and Hideyuki Miura.)
In this talk, the two dimensional Euler flow under a simple symmetry condition with hyperbolic structure in a unit square $D=\{(x_{1}, x_{2}): 0 < x_{1} + x_{2} < \sqrt{2},\ 0<-x_{1} + x_{2} < \sqrt{2}\}$ is considered.
It is shown that the Lipschitz estimate of the vorticity on the boundary is at most single exponential growth near the stagnation point.
(Joint work with Tsuyoshi Yoneda and Hideyuki Miura.)