Lie Groups and Representation Theory
Seminar information archive ~05/24|Next seminar|Future seminars 05/25~
Date, time & place | Tuesday 16:30 - 18:00 126Room #126 (Graduate School of Math. Sci. Bldg.) |
---|
2014/07/12
09:30-11:45 Room #126 (Graduate School of Math. Sci. Bldg.)
Toshio Oshima (Josai University) 09:30-10:30
Hypergeometric systems and Kac-Moody root systems (ENGLISH)
Gordan Savin (the University of Utah) 10:45-11:45
Representations of covering groups with multiplicity free K-types (ENGLISH)
Toshio Oshima (Josai University) 09:30-10:30
Hypergeometric systems and Kac-Moody root systems (ENGLISH)
Gordan Savin (the University of Utah) 10:45-11:45
Representations of covering groups with multiplicity free K-types (ENGLISH)
[ Abstract ]
Let g be a simple Lie algebra over complex numbers. McGovern has
described an ideal J in the enveloping algebra U such that U/J, considered as a g-module under the adjoint action, is a sum of all self-dual representations of g with multiplicity one. In a joint work with Loke, we prove that all (g,K)-modules annihilated by J have multiplicity free K-types, where K is defined by the Chevalley involution.
Let g be a simple Lie algebra over complex numbers. McGovern has
described an ideal J in the enveloping algebra U such that U/J, considered as a g-module under the adjoint action, is a sum of all self-dual representations of g with multiplicity one. In a joint work with Loke, we prove that all (g,K)-modules annihilated by J have multiplicity free K-types, where K is defined by the Chevalley involution.