Tuesday Seminar on Topology
Seminar information archive ~12/07|Next seminar|Future seminars 12/08~
Date, time & place | Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya |
2014/06/03
16:30-18:00 Room #056 (Graduate School of Math. Sci. Bldg.)
Tatsuru Takakura (Chuo University)
Vector partition functions and the topology of multiple weight varieties
(JAPANESE)
Tatsuru Takakura (Chuo University)
Vector partition functions and the topology of multiple weight varieties
(JAPANESE)
[ Abstract ]
A multiple weight variety is a symplectic quotient of a direct product
of several coadjoint orbits of a compact Lie group $G$, with respect to
the diagonal action of the maximal torus. Its geometry and topology are
closely related to the combinatorics concerned with the weight space
decomposition of a tensor product of irreducible representations of $G$.
For example, when considering the Riemann-Roch index, we are naturally
lead to the study of vector partition functions with multiplicities.
In this talk, we discuss some formulas for vector partition functions,
especially a generalization of the formula of Brion-Vergne. Then, by
using
them, we investigate the structure of the cohomology of certain multiple
weight varieties of type $A$ in detail.
A multiple weight variety is a symplectic quotient of a direct product
of several coadjoint orbits of a compact Lie group $G$, with respect to
the diagonal action of the maximal torus. Its geometry and topology are
closely related to the combinatorics concerned with the weight space
decomposition of a tensor product of irreducible representations of $G$.
For example, when considering the Riemann-Roch index, we are naturally
lead to the study of vector partition functions with multiplicities.
In this talk, we discuss some formulas for vector partition functions,
especially a generalization of the formula of Brion-Vergne. Then, by
using
them, we investigate the structure of the cohomology of certain multiple
weight varieties of type $A$ in detail.