Geometry Colloquium

Seminar information archive ~06/09Next seminarFuture seminars 06/10~

Date, time & place Friday 10:00 - 11:30 126Room #126 (Graduate School of Math. Sci. Bldg.)


10:00-11:30   Room #122 (Graduate School of Math. Sci. Bldg.)
Kota Hattori (University of Tokyo)
A generalization of Taub-NUT deformations (JAPANESE)
[ Abstract ]
Taub-NUT metric on C^2 is a complete Ricci-flat Kaehler metric which is not flat. It is obtained by the Taub-NUT deformations of the Euclidean metric on C^2 using an S^1 action. Taub-NUT deformations are known to be defined for toric hyperKaehler manifolds, and deform ALE metrics to non-ALE metrics. In this talk, I explain a generalization of Taub-NUT deformations by using noncommutative Lie groups.