Seminar on Geometric Complex Analysis

Seminar information archive ~09/23Next seminarFuture seminars 09/24~

Date, time & place Monday 10:30 - 12:00 128Room #128 (Graduate School of Math. Sci. Bldg.)
Organizer(s) Kengo Hirachi, Shigeharu Takayama


10:30-12:00   Room #126 (Graduate School of Math. Sci. Bldg.)
Takushi AMEMIYA (MS U-Tokyo)
Value distribution of meromorphic mappings to compact complex manifolds (JAPANESE)
[ Abstract ]
In a late paper of J. Noguchi and J. Winkelmann they showed the condition of being Kähler or non-Kähler of the image space to make a difference in the value distribution theory of meromorphic mappings into compact complex manifolds. In the present talk, we will discuss the order of meromorphic mappings to a Hopf surface which is more general than dealt with by Noguchi-Winkelmann, and an Inoue surface (they are non-Kähler surfaces). For a general Hopf surface $S$, we prove that there exists a differentiably non-degenerate holomorphic mapping $f:\mathbf{C}^2 \to S$ whose order satisfies $\rho_{f}\leq 1$. For an Inoue surface $S'$, we prove that every non-constant meromorphic mapping $f:\mathbf{C}^n \to S'$ is holomorphic and its order satisfies $\rho_{f}\geq 2$.