Applied Analysis

Seminar information archive ~03/25Next seminarFuture seminars 03/26~

Date, time & place Thursday 16:00 - 17:30 002Room #002 (Graduate School of Math. Sci. Bldg.)


16:00-17:30   Room #128 (Graduate School of Math. Sci. Bldg.)
Bernold Fiedler (Free University of Berlin)
Fusco-Rocha meanders: from Temperley-Lieb algebras to black holes
[ Abstract ]
Fusco and Rocha studied Neumann boundary value problems for ODEs of second order via a shooting approach. They introduced the notion of what we now call Sturm permutation. These permutation relate, on the one hand, to a special class of meandering curves as introduced by Arnol'd in a singularity context. On the other hand, their special class became central in the study of global attractors of parabolic PDEs of Sturm type.

We discuss relations of Fusco-Rocha meanders with further areas: the multiplicative and trace structure in Temperley-Lieb algebras, discrete versions of Cartesian billiards, and the problem of constructing initial conditions for black hole dynamics which satisfy the Einstein constraints. We also risk a brief glimpse at the long and meandric history of meander patterns themselves.

This is joint work with Juliette Hell, Brian Smith, Carlos Rocha, Pablo Castaneda, and Matthias Wolfrum.