Algebraic Geometry Seminar
Seminar information archive ~03/29|Next seminar|Future seminars 03/30~
Date, time & place | Tuesday 10:30 - 11:30 or 12:00 ハイブリッド開催/002Room #ハイブリッド開催/002 (Graduate School of Math. Sci. Bldg.) |
---|
2012/10/01
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Ryo Ohkawa (RIMS, Kyoto University)
Frobenius morphisms and derived categories on two dimensional toric Deligne--Mumford stacks (JAPANESE)
Ryo Ohkawa (RIMS, Kyoto University)
Frobenius morphisms and derived categories on two dimensional toric Deligne--Mumford stacks (JAPANESE)
[ Abstract ]
For a toric Deligne-Mumford (DM) stack over the complex number field, we can consider a certain generalization of the Frobenius endomorphism. For such an endomorphism of a two-dimensional toric DM stack, we show that the push-forward of the structure sheaf generates the bounded derived category of coherent sheaves on the stack. This is joint work with Hokuto Uehara.
For a toric Deligne-Mumford (DM) stack over the complex number field, we can consider a certain generalization of the Frobenius endomorphism. For such an endomorphism of a two-dimensional toric DM stack, we show that the push-forward of the structure sheaf generates the bounded derived category of coherent sheaves on the stack. This is joint work with Hokuto Uehara.