Tuesday Seminar on Topology

Seminar information archive ~10/03Next seminarFuture seminars 10/04~

Date, time & place Tuesday 17:00 - 18:30 056Room #056 (Graduate School of Math. Sci. Bldg.)
Organizer(s) KAWAZUMI Nariya, KITAYAMA Takahiro, SAKASAI Takuya

2012/09/04

17:00-18:00   Room #002 (Graduate School of Math. Sci. Bldg.)
Piotr Nowak (the Institute of Mathematics, Polish Academy of Sciences)
Poincare inequalities, rigid groups and applications (ENGLISH)
[ Abstract ]
Kazhdan’s property (T) for a group G can be expressed as a
fixed point property for affine isometric actions of G on a Hilbert
space. This definition generalizes naturally to other normed spaces. In
this talk we will focus on the spectral (aka geometric) method for
proving property (T), based on the work of Garland and studied earlier
by Pansu, Zuk, Ballmann-Swiatkowski, Dymara-Januszkiewicz
(“lambda_1>1/2” conditions) and we generalize it to to the setting of
all reflexive Banach spaces.
As applications we will show estimates of the conformal dimension of the
boundary of random hyperbolic groups in the Gromov density model and
present progress on Shalom’s conjecture on vanishing of 1-cohomology
with coefficients in uniformly bounded representations on Hilbert spaces.