PDE Real Analysis Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Tuesday 10:30 - 11:30 056Room #056 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | Yoshikazu Giga, Kazuhiro Ishige, Hiroyoshi Mitake, Tsuyoshi Yoneda |
URL | https://www.math.sci.hokudai.ac.jp/coe/sympo/pde_ra/index_en.html |
2012/06/20
10:30-11:30 Room #056 (Graduate School of Math. Sci. Bldg.)
Paolo Maremonti (Seconda Università degli Studi di Napoli)
On the Navier-Stokes Cauchy problem with nondecaying data (ENGLISH)
Paolo Maremonti (Seconda Università degli Studi di Napoli)
On the Navier-Stokes Cauchy problem with nondecaying data (ENGLISH)
[ Abstract ]
We prove the well posedeness of the Navier-Stokes Cauchy problem for nondecaying initial data u_0 \\in C (R^n) \\cap L^\\infty (R^n), n >= 3. This problem is studied by Giga, Inui and Matsui for n >= 3, and Giga, Matsui and Sawada in the two dimensional case. The aims of our paper are slight different since we also find pointwise estimates for the pressure field. Via a uniqueness theorem, we give a sort of structure theorem to GIM solutions.
We prove the well posedeness of the Navier-Stokes Cauchy problem for nondecaying initial data u_0 \\in C (R^n) \\cap L^\\infty (R^n), n >= 3. This problem is studied by Giga, Inui and Matsui for n >= 3, and Giga, Matsui and Sawada in the two dimensional case. The aims of our paper are slight different since we also find pointwise estimates for the pressure field. Via a uniqueness theorem, we give a sort of structure theorem to GIM solutions.