Algebraic Geometry Seminar

Seminar information archive ~04/25Next seminarFuture seminars 04/26~

Date, time & place Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.)
Organizer(s) GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto

2012/07/23

15:30-17:00   Room #122 (Graduate School of Math. Sci. Bldg.)
Shinnosuke Okawa (University of Tokyo)
Derived category of smooth proper Deligne-Mumford stack with p_g>0 (JAPANESE)
[ Abstract ]
Semiorthogonal decomposition (SOD) of the derived category of coherent sheaves reflects interesting geometry of varieties (more generally stacks), such as minimal model program. We show that the global sections of the canonical line bundle (if exists) give restrictions on the possible form of SODs. As a special case, we see that the global generation of the canonical line bundle implies the non-existence of SODs. (joint work with Kotaro Kawatani)