Algebraic Geometry Seminar
Seminar information archive ~10/15|Next seminar|Future seminars 10/16~
Date, time & place | Friday 13:30 - 15:00 ハイブリッド開催/117Room #ハイブリッド開催/117 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, NAKAMURA Yusuke, TANAKA Hiromu |
2012/07/23
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Shinnosuke Okawa (University of Tokyo)
Derived category of smooth proper Deligne-Mumford stack with p_g>0 (JAPANESE)
Shinnosuke Okawa (University of Tokyo)
Derived category of smooth proper Deligne-Mumford stack with p_g>0 (JAPANESE)
[ Abstract ]
Semiorthogonal decomposition (SOD) of the derived category of coherent sheaves reflects interesting geometry of varieties (more generally stacks), such as minimal model program. We show that the global sections of the canonical line bundle (if exists) give restrictions on the possible form of SODs. As a special case, we see that the global generation of the canonical line bundle implies the non-existence of SODs. (joint work with Kotaro Kawatani)
Semiorthogonal decomposition (SOD) of the derived category of coherent sheaves reflects interesting geometry of varieties (more generally stacks), such as minimal model program. We show that the global sections of the canonical line bundle (if exists) give restrictions on the possible form of SODs. As a special case, we see that the global generation of the canonical line bundle implies the non-existence of SODs. (joint work with Kotaro Kawatani)