Algebraic Geometry Seminar
Seminar information archive ~05/02|Next seminar|Future seminars 05/03~
Date, time & place | Friday 13:30 - 15:00 118Room #118 (Graduate School of Math. Sci. Bldg.) |
---|---|
Organizer(s) | GONGYO Yoshinori, KAWAKAMI Tatsuro, ENOKIZONO Makoto |
2012/06/25
15:30-17:00 Room #122 (Graduate School of Math. Sci. Bldg.)
Keiji Oguiso (Osaka University)
Automorphism groups of Calabi-Yau manifolds of Picard number two (JAPANESE)
Keiji Oguiso (Osaka University)
Automorphism groups of Calabi-Yau manifolds of Picard number two (JAPANESE)
[ Abstract ]
We prove that the automorphism group of an odd dimensional Calabi-Yau manifold of Picard number two is always a finite group. This makes a sharp contrast to the automorphism groups of K3 surfaces and hyperk\\"ahler manifolds and birational automorphism groups, as I shall explain. We also clarify the relation between finiteness of the automorphism group (resp. birational automorphism group) and the rationality of the nef cone (resp. movable cone) for a hyperk\\"ahler manifold of Picard number two. We will also discuss a similar conjectual relation for a Calabi-Yau threefold of Picard number two, together with exsistence of rational curve, expected by the cone conjecture.
We prove that the automorphism group of an odd dimensional Calabi-Yau manifold of Picard number two is always a finite group. This makes a sharp contrast to the automorphism groups of K3 surfaces and hyperk\\"ahler manifolds and birational automorphism groups, as I shall explain. We also clarify the relation between finiteness of the automorphism group (resp. birational automorphism group) and the rationality of the nef cone (resp. movable cone) for a hyperk\\"ahler manifold of Picard number two. We will also discuss a similar conjectual relation for a Calabi-Yau threefold of Picard number two, together with exsistence of rational curve, expected by the cone conjecture.